

Tutorials Point, Simply Easy Learning

1 | P a g e

SQL Tutorial

Tutorialspoint.com

SQL is a database computer language designed for the retrieval and management of
data in relational database.

SQL stands for Structured Query Language. This tutorial gives an initial push to start
you with SQL. For more detail kindly check tutorialspoint.com/sql

This SQL tutorial gives unique learning on Structured Query Language and it helps to make
practice on SQL commands which provides immediate results. SQL is a language of database, it
includes database creation, deletion, fetching rows and modifying rows etc.

SQL is an ANSI (American National Standards Institute) standard but there are many different
versions of the SQL language.

What is SQL?

SQL is structured Query Language which is a computer language for storing, manipulating and
retrieving data stored in relational database.

SQL is the standard language for Relation Database System. All relational database
management systems like MySQL, MS Access, Oracle, Sybase, Informix, postgres and SQL
Server uses SQL as standard database language.

Also they are using different dialects, Such as:

 MS SQL Server using T-SQL,

 Oracle using PL/SQL,

 MS Access version of SQL is called JET SQL (native format)etc

Why SQL?

 Allow users to access data in relational database management systems.

 Allow users to describe the data.

 Allow users to define the data in database and manipulate that data.

 Allow to embed within other languages using SQL modules, libraries & pre-compilers.

 Allow users to create and drop databases and tables.

 Allow users to create view, stored procedure, functions in a database.

 Allow users to set permissions on tables, procedures, and views

History:

 1970 -- Dr. E.F. "Ted" of IBM is known as the father of relational databases. He
described a relational model for databases.

 1974 -- Structured Query Language appeared.

 1978 -- IBM worked to develop Codd's ideas and released a product named System/R.

 1986 -- IBM developed the first prototype of relational database and standardized by

ANSI. The first relational database was released by Relational Software and its later
becoming Oracle.

SQL Process:

http://www.tutorialspoint.com/jsp
http://www.tutorialspoint.com/sql

Tutorials Point, Simply Easy Learning

2 | P a g e

When you are executing an SQL command for any RDBMS, the system determines the best way
to carry out your request and SQL engine figures out how to interpret the task.

There are various components included in the process. These components are Query Dispatcher,
Optimization engines, Classic Query Engine and SQL query engine etc. Classic query engine
handles all non-SQL queries but SQL query engine won't handle logical files.

Following is a simple digram showing SQL Architecture:

SQL Commands:

The standard SQL commands to interact with relational databases are CREATE, SELECT,

INSERT, UPDATE, DELETE, and DROP. These commands can be classified into groups based on
their nature:

DDL - Data Definition Language:

Command Description

CREATE Creates a new table, a view of a table, or other object in database

ALTER Modifies an existing database object, such as a table.

DROP Deletes an entire table, a view of a table or other object in the
database.

DML - Data Manipulation Language:

Command Description

INSERT Creates a record

Tutorials Point, Simply Easy Learning

3 | P a g e

UPDATE Modifies records

DELETE Deletes records

DCL - Data Control Language:

Command Description

GRANT Gives a privilege to user

REVOKE Takes back privileges granted from user

DQL - Data Query Language:

Command Description

SELECT Retrieves certain records from one or more tables

SQL –Syntax

SQL is followed by unique set of rules and guidelines called Syntax. This tutorial gives you a
quick start with SQL by listing all the basic SQL Syntax:

All the SQL statements start with any of the keywords like SELECT, INSERT, UPDATE, DELETE,
ALTER, DROP, CREATE, USE, SHOW and all the statements end with a semicolon (;).

Important point to be noted is that SQL is case insensitive which means SELECT and select
have same meaning in SQL statements but MySQL make difference in table names. So if you
are working with MySQL then you need to give table names as they exist in the database.

SQL SELECT Statement:

SELECT column1, column2....columnN

FROM table_name;

SQL DISTINCT Clause:

SELECT DISTINCT column1, column2....columnN

FROM table_name;

SQL WHERE Clause:

SELECT column1, column2....columnN

FROM table_name

WHERE CONDITION;

SQL AND/OR Clause:

SELECT column1, column2....columnN

FROM table_name

WHERE CONDITION-1 {AND|OR} CONDITION-2;

SQL IN Clause:

SELECT column1, column2....columnN

FROM table_name

WHERE column_name IN (val-1, val-2,...val-N);

Tutorials Point, Simply Easy Learning

4 | P a g e

SQL BETWEEN Clause:

SELECT column1, column2....columnN

FROM table_name

WHERE column_name BETWEEN val-1 AND val-2;

SQL Like Clause:

SELECT column1, column2....columnN

FROM table_name

WHERE column_name LIKE { PATTERN };

SQL ORDER BY Clause:

SELECT column1, column2....columnN

FROM table_name

WHERE CONDITION

ORDER BY column_name {ASC|DESC};

SQL GROUP BY Clause:

SELECT SUM(column_name)

FROM table_name

WHERE CONDITION

GROUP BY column_name;

SQL COUNT Clause:

SELECT COUNT(column_name)

FROM table_name

WHERE CONDITION;

SQL HAVING Clause:

SELECT SUM(column_name)

FROM table_name

WHERE CONDITION

GROUP BY column_name

HAVING (arithematic function condition);

SQL CREATE TABLE Statement:

CREATE TABLE table_name(

column1 datatype,

column2 datatype,

column3 datatype,

.....

columnN datatype,

PRIMARY KEY(one or more columns)

);

SQL DROP TABLE Statement:

DROP TABLE table_name;

SQL CREATE INDEX Statement :

Tutorials Point, Simply Easy Learning

5 | P a g e

CREATE UNIQUE INDEX index_name

ON table_name (column1, column2,...columnN);

SQL DROP INDEX Statement :

ALTER TABLE table_name

DROP INDEX index_name;

SQL DESC Statement :

DESC table_name;

SQL TRUNCATE TABLE Statement:

TRUNCATE TABLE table_name;

SQL ALTER TABLE Statement:

ALTER TABLE table_name {ADD|DROP|MODIFY} column_name {data_ype};

SQL ALTER TABLE Statement (Rename) :

ALTER TABLE table_name RENAME TO new_table_name;

SQL INSERT INTO Statement:

INSERT INTO table_name(column1, column2....columnN)

VALUES (value1, value2....valueN);

SQL UPDATE Statement:

UPDATE table_name

SET column1 = value1, column2 = value2....columnN=valueN

[WHERE CONDITION];

SQL DELETE Statement:

DELETE FROM table_name

WHERE {CONDITION};

SQL CREATE DATABASE Statement:

CREATE DATABASE database_name;

SQL DROP DATABASE Statement:

DROP DATABASE database_name;

SQL USE Statement:

USE DATABASE database_name;

SQL COMMIT Statement:

COMMIT;

Tutorials Point, Simply Easy Learning

6 | P a g e

SQL ROLLBACK Statement:

ROLLBACK;

SQL - Data Types

SQL data type is an attribute that specifies type of data of any object. Each column, variable
and expression has related data type in SQL.

You would use these data types while creating your tables. You would choose a particular data
type for a table column based on your requirement.

SQL Server offers six categories of data types for your use:

Exact Numeric Data Types:

DATA TYPE FROM TO

bigint -9,223,372,036,854,775,808 9,223,372,036,854,775,807

int -2,147,483,648 2,147,483,647

smallint -32,768 32,767

tinyint 0 255

bit 0 1

decimal -10^38 +1 10^38 .1

numeric -10^38 +1 10^38 .1

money -922,337,203,685,477.5808 +922,337,203,685,477.5807

smallmoney -214,748.3648 +214,748.3647

Approximate Numeric Data Types:

DATA TYPE FROM TO

float -1.79E + 308 1.79E + 308

real -3.40E + 38 3.40E + 38

Date and Time Data Types:

Tutorials Point, Simply Easy Learning

7 | P a g e

DATA TYPE FROM TO

datetime Jan 1, 1753 Dec 31, 9999

smalldatetime Jan 1, 1900 Jun 6, 2079

date Stores a date like June 30, 1991

time Stores a time of day like 12:30 P.M.

Note: Here datetime has 3.33 milliseconds accuracy where as smalldatetime has 1 minute
accuracy.

Character Strings Data Types:

DATA TYPE FROM TO

char char Maximum length of 8,000

characters.(Fixed length non-

Unicode characters)

varchar varchar Maximum of 8,000

characters.(Variable-length non-

Unicode data).

varchar(max) varchar(max) Maximum length of 231characters,

Variable-length non-Unicode data

(SQL Server 2005 only).

text text Variable-length non-Unicode data

with a maximum length of

2,147,483,647 characters.

Unicode Character Strings Data Types:

DATA TYPE Description

nchar Maximum length of 4,000 characters.(Fixed length Unicode)

nvarchar Maximum length of 4,000 characters.(Variable length Unicode)

nvarchar(max) Maximum length of 231characters (SQL Server 2005 only).(

Variable length Unicode)

ntext Maximum length of 1,073,741,823 characters. (Variable length

Unicode)

Tutorials Point, Simply Easy Learning

8 | P a g e

Binary Data Types:

DATA TYPE Description

binary Maximum length of 8,000 bytes(Fixed-length binary data)

varbinary Maximum length of 8,000 bytes.(Variable length binary data)

varbinary(max) Maximum length of 231 bytes (SQL Server 2005 only). (Variable

length Binary data)

image Maximum length of 2,147,483,647 bytes. (Variable length Binary

Data)

Misc Data Types:

DATA TYPE Description

sql_variant Stores values of various SQL Server-supported data types, except

text, ntext, and timestamp.

timestamp Stores a database-wide unique number that gets updated every

time a row gets updated

uniqueidentifier Stores a globally unique identifier (GUID)

xml Stores XML data. You can store xml instances in a column or a

variable (SQL Server 2005 only).

cursor Reference to a cursor object

table Stores a result set for later processing

SQL – Operators

What is an Operator in SQL?

An operator is a reserved word or a character used primarily in an SQL statement's WHERE
clause to perform operation(s), such as comparisons and arithmetic operations.

Operators are used to specify conditions in an SQL statement and to serve as conjunctions for
multiple conditions in a statement.

 Arithmetic operators

 Comparison operators

 Logical operators

 Operators used to negate conditions

Tutorials Point, Simply Easy Learning

9 | P a g e

SQL Arithmetic Operators:

Assume variable a holds 10 and variable b holds 20 then:

Show Examples

Operator Description Example

+ Addition - Adds values on either side of

the operator

a + b will give 30

- Subtraction - Subtracts right hand

operand from left hand operand

a - b will give -10

* Multiplication - Multiplies values on either

side of the operator

a * b will give 200

/ Division - Divides left hand operand by

right hand operand

b / a will give 2

% Modulus - Divides left hand operand by

right hand operand and returns

remainder

b % a will give 0

SQL Comparison Operators:

Assume variable a holds 10 and variable b holds 20 then:

Show Examples

Operator Description Example

= Checks if the value of two operands are

equal or not, if yes then condition

becomes true.

(a = b) is not true.

!= Checks if the value of two operands are

equal or not, if values are not equal then

condition becomes true.

(a != b) is true.

<> Checks if the value of two operands are

equal or not, if values are not equal then

condition becomes true.

(a <> b) is true.

> Checks if the value of left operand is

greater than the value of right operand,

if yes then condition becomes true.

(a > b) is not true.

http://www.tutorialspoint.com/sql/sql-arithmetic-operators.htm
http://www.tutorialspoint.com/sql/sql-comparison-operators.htm

Tutorials Point, Simply Easy Learning

10 | P a g e

< Checks if the value of left operand is less

than the value of right operand, if yes

then condition becomes true.

(a < b) is true.

>= Checks if the value of left operand is

greater than or equal to the value of

right operand, if yes then condition

becomes true.

(a >= b) is not true.

<= Checks if the value of left operand is less

than or equal to the value of right

operand, if yes then condition becomes

true.

(a <= b) is true.

!< Checks if the value of left operand is not

less than the value of right operand, if

yes then condition becomes true.

(a !< b) is false.

!> Checks if the value of left operand is not

greater than the value of right operand,

if yes then condition becomes true.

(a !> b) is true.

SQL Logical Operators:

Here is a list of all the logical operators available in SQL.

Show Examples

Operator Description

ALL The ALL operator is used to compare a value to all values in another value

set.

AND The AND operator allows the existence of multiple conditions in an SQL

statement's WHERE clause.

ANY The ANY operator is used to compare a value to any applicable value in the

list according to the condition.

BETWEEN The BETWEEN operator is used to search for values that are within a set of

values, given the minimum value and the maximum value.

EXISTS The EXISTS operator is used to search for the presence of a row in a

specified table that meets certain criteria.

IN The IN operator is used to compare a value to a list of literal values that

have been specified.

http://www.tutorialspoint.com/sql/sql-logical-operators.htm

Tutorials Point, Simply Easy Learning

11 | P a g e

LIKE The LIKE operator is used to compare a value to similar values using

wildcard operators.

NOT The NOT operator reverses the meaning of the logical operator with which it

is used. Eg. NOT EXISTS, NOT BETWEEN, NOT IN etc. This is negate

operator.

OR The OR operator is used to combine multiple conditions in an SQL

statement's WHERE clause.

IS NULL The NULL operator is used to compare a value with a NULL value.

UNIQUE The UNIQUE operator searches every row of a specified table for uniqueness

(no duplicates).

SQL – Expressions

An expression is a combination of one or more values, operators, and SQL functions that
evaluate to a value.

SQL EXPRESSIONs are like formulas and they are written in query language. You can also used
to query the database for specific set of data.

Syntax:

Consider the basic syntax of the SELECT statement as follows:

SELECT column1, column2, columnN

FROM table_name

WHERE [CONTION|EXPRESSION];

There are different types of SQL expression, which are mentioned below:

SQL - Boolean Expressions:

SQL Boolean Expressions fetch the data on the basis of matching single value. Following is the
syntax:

SELECT column1, column2, columnN

FROM table_name

WHERE SINGLE VALUE MATCHTING EXPRESSION;

Consider CUSTOMERS table has following records:

SQL> SELECT * FROM CUSTOMERS;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

Tutorials Point, Simply Easy Learning

12 | P a g e

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

7 rows in set (0.00 sec)

Here is simple examples showing usage of SQL Boolean Expressions:

SQL> SELECT * FROM CUSTOMERS WHERE SALARY = 10000;

+----+-------+-----+---------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+-------+-----+---------+----------+

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+-------+-----+---------+----------+

1 row in set (0.00 sec)

SQL - Numeric Expression:

This expression is used to perform any mathematical operation in any query. Following is the
syntax:

SELECT numerical_expression as OPERATION_NAME

[FROM table_name

WHERE CONDITION] ;

Here numerical_expression is used for mathematical expression or any formula. Following is a
simple examples showing usage of SQL Numeric Expressions:

SQL> SELECT (15 + 6) AS ADDITION

+----------+

| ADDITION |

+----------+

| 21 |

+----------+

1 row in set (0.00 sec)

There are several built-in functions like avg(), sum(), count() etc.to perform what is known as
aggregate data calculations against a table or a specific table column.

SQL> SELECT COUNT(*) AS "RECORDS" FROM CUSTOMERS;

+---------+

| RECORDS |

+---------+

| 7 |

+---------+

1 row in set (0.00 sec)

SQL - Date Expressions:

Date Expressions return current system date and time values:

Tutorials Point, Simply Easy Learning

13 | P a g e

SQL> SELECT CURRENT_TIMESTAMP;

+---------------------+

| Current_Timestamp |

+---------------------+

| 2009-11-12 06:40:23 |

+---------------------+

1 row in set (0.00 sec)

Another date expression is as follows:

SQL> SELECT GETDATE();;

+-------------------------+

| GETDATE |

+-------------------------+

| 2009-10-22 12:07:18.140 |

+-------------------------+

1 row in set (0.00 sec)

SQL - CREATE Database

The SQL CREATE DATABASE statement is used to create new SQL database.

Syntax:

Basic syntax of CREATE DATABASE statement is as follows:

CREATE DATABASE DatabaseName;

Always database name should be unique within the RDBMS.

Example:

If you want to create new database <testDB>, then CREATE DATABASE statement would be as
follows:

SQL> CREATE DATABASE testDB;

Make sure you has admin previledge before creating any database. Once a database is created,
you can check it in the list of databases as follws:

SQL> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| AMROOD |

| TUTORIALSPOINT |

| mysql |

| orig |

| test |

| testDB |

+--------------------+

7 rows in set (0.00 sec)

Tutorials Point, Simply Easy Learning

14 | P a g e

SQL - DROP or DELETE Database

The SQL DROP DATABASE statement is used to drop any existing database in SQL schema.

Syntax:

Basic syntax of DROP DATABASE statement is as follows:

DROP DATABASE DatabaseName;

Always database name should be unique within the RDBMS.

Example:

If you want to delete an existing database <testDB>, then DROP DATABASE statement would
be as follows:

SQL> DROP DATABASE testDB;

NOTE: Be careful before using this operation because by deleting an existing database would
result in loss of complete information stored in the database.

Make sure you has admin previledge before dropping any database. Once a database is
dropped, you can check it in the list of databases as follws:

SQL> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| AMROOD |

| TUTORIALSPOINT |

| mysql |

| orig |

| test |

+--------------------+

6 rows in set (0.00 sec)

SQL - SELECT Database

When you have multiple databases in your SQL Schema, then before starting your operation,
you would need to select a database where all the operations would be performed.

The SQL USE statement is used to select any existing database in SQL schema.

Syntax:

Basic syntax of USE statement is as follows:

USE DatabaseName;

Always database name should be unique within the RDBMS.

Tutorials Point, Simply Easy Learning

15 | P a g e

Example:

You can check available databases as follows:

SQL> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| AMROOD |

| TUTORIALSPOINT |

| mysql |

| orig |

| test |

+--------------------+

6 rows in set (0.00 sec)

Now if you want to work with AMROOD database then you can execute following SQL command
and start working with AMROOD database:

SQL> USE AMROOD;

SQL - CREATE Table

Creating a basic table involves naming the table and defining its columns and each column's
data type.

The SQL CREATE TABLE statement is used to create a new table.

Syntax:

Basic syntax of CREATE TABLE statement is as follows:

CREATE TABLE table_name(

 column1 datatype,

 column2 datatype,

 column3 datatype,

 columnN datatype,

 PRIMARY KEY(one or more columns)

);

CREATE TABLE is the keyword telling the database system what you want to do.in this case, you

want to create a new table. The unique name or identifier for the table follows the CREATE
TABLE statement.

Then in brackets comes the list defining each column in the table and what sort of data type it
is. The syntax becomes clearer with an example below.

A copy of an existing table can be created using a combination of the CREATE TABLE statement
and the SELECT statement. You can check complete detail at Create Table Using another Tables

Example:

http://www.tutorialspoint.com/sql/sql-create-table-using-tables.htm

Tutorials Point, Simply Easy Learning

16 | P a g e

Following is an example which creates a CUSTOMERS table with ID as primary key and NOT
NULL are the constraints showing that these fileds can not be NULL while creating records in this
table:

SQL> CREATE TABLE CUSTOMERS(

 ID INT NOT NULL,

 NAME VARCHAR (20) NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR (25) ,

 SALARY DECIMAL (18, 2),

 PRIMARY KEY (ID)

);

You can verify if your table has been created successfully by looking at the message displayed
by the SQL server otherwise you can use DESC command as follows:

SQL> DESC CUSTOMERS;

+---------+---------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------+---------------+------+-----+---------+-------+

| ID | int(11) | NO | PRI | | |

| NAME | varchar(20) | NO | | | |

| AGE | int(11) | NO | | | |

| ADDRESS | char(25) | YES | | NULL | |

| SALARY | decimal(18,2) | YES | | NULL | |

+---------+---------------+------+-----+---------+-------+

5 rows in set (0.00 sec)

Now you have CUSTOMERS table available in your database which you can use to store required
information related to customers.

SQL - DROP or DELETE Table

The SQL DROP TABLE statement is used to remove a table definition and all data, indexes,
triggers, constraints, and permission specifications for that table.

NOTE: You have to be careful while using this command because once a table is deleted then all
the information available in the table would also be lost forever.

Syntax:

Basic syntax of DROP TABLE statement is as follows:

DROP TABLE table_name;

Example:

Let us first verify CUSTOMERS table, and then we would delete it from the database:

SQL> DESC CUSTOMERS;

+---------+---------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------+---------------+------+-----+---------+-------+

| ID | int(11) | NO | PRI | | |

Tutorials Point, Simply Easy Learning

17 | P a g e

| NAME | varchar(20) | NO | | | |

| AGE | int(11) | NO | | | |

| ADDRESS | char(25) | YES | | NULL | |

| SALARY | decimal(18,2) | YES | | NULL | |

+---------+---------------+------+-----+---------+-------+

5 rows in set (0.00 sec)

This means CUSTOMERS table is available in the database, so let us drop it as follows:

SQL> DROP TABLE CUSTOMERS;

Query OK, 0 rows affected (0.01 sec)

Now if you would try DESC command then you would get error as follows:

SQL> DESC CUSTOMERS;

ERROR 1146 (42S02): Table 'TEST.CUSTOMERS' doesn't exist

Here TEST is database name which we are using for our examples.

SQL - INSERT Query

The SQL INSERT INTO Statement is used to add new rows of data to a table in the database.

Syntax:

There are two basic syntax of INSERT INTO statement is as follows:

INSERT INTO TABLE_NAME (column1, column2, column3,...columnN)]

VALUES (value1, value2, value3,...valueN);

Here column1, column2,...columnN are the names of the columns in the table into which you
want to insert data.

You may not need to specify the column(s) name in the SQL query if you are adding values for
all the columns of the table. But make sure the order of the values is in the same order as the
columns in the table. The SQL INSERT INTO syntax would be as follows:

INSERT INTO TABLE_NAME VALUES (value1,value2,value3,...valueN);

Example:

Following statements would create six records in CUSTOMERS table:

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (1, 'Ramesh', 32, 'Ahmedabad', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (2, 'Khilan', 25, 'Delhi', 1500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (3, 'kaushik', 23, 'Kota', 2000.00);

Tutorials Point, Simply Easy Learning

18 | P a g e

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (4, 'Chaitali', 25, 'Mumbai', 6500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (5, 'Hardik', 27, 'Bhopal', 8500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (6, 'Komal', 22, 'MP', 4500.00);

You can create a record in CUSTOMERS table using second syntax as follows:

INSERT INTO CUSTOMERS

VALUES (7, 'Muffy', 24, 'Indore', 10000.00);

All the above statement would product following records in CUSTOMERS table:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Populate one table using another table:

You can populate data into a table through select statement over another table provided
another table has a set of fields which are required to populate first table. Here is the syntax:

INSERT INTO first_table_name [(column1, column2, ... columnN)]

 SELECT column1, column2, ...columnN

 FROM second_table_name

 [WHERE condition];

SQL - SELECT Query

SQL SELECT Statement is used to fetch the data from a database table which returns data in
the form of result table. These result tables are called result-sets.

Syntax:

The basic syntax of SELECT statement is as follows:

SELECT column1, column2, columnN FROM table_name;

Here column1, column2...are the fields of a table whose values you want to fetch. If you want
to fetch all the fields available in the field then you can use following syntax:

Tutorials Point, Simply Easy Learning

19 | P a g e

SELECT * FROM table_name;

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Following is an example which would fetch ID, Name and Salary fields of the customers
available in CUSTOMERS table:

SQL> SELECT ID, NAME, SALARY FROM CUSTOMERS;

This would produce following result:

+----+----------+----------+

| ID | NAME | SALARY |

+----+----------+----------+

| 1 | Ramesh | 2000.00 |

| 2 | Khilan | 1500.00 |

| 3 | kaushik | 2000.00 |

| 4 | Chaitali | 6500.00 |

| 5 | Hardik | 8500.00 |

| 6 | Komal | 4500.00 |

| 7 | Muffy | 10000.00 |

+----+----------+----------+

If you want to fetch all the fields of CUSTOMERS table then use the following query:

SQL> SELECT * FROM CUSTOMERS;

This would produce following result:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Tutorials Point, Simply Easy Learning

20 | P a g e

SQL - WHERE Clause

The SQL WHERE clause is used to specify a condition while fetching the data from single table
or joining with multiple table.

If the given condition is satisfied then only it returns specific value from the table. You would
use WHERE clause to filter the records and fetching only necessary records.

The WHERE clause not only used in SELECT statement, but it is also used in UPDATE, DELETE
statement etc. which we would examine in subsequent chapters.

Syntax:

The basic syntax of SELECT statement with WHERE clause is as follows:

SELECT column1, column2, columnN

FROM table_name

WHERE [condition]

You can specify a condition using comparision or logical operators like >, <, =, LIKE, NOT etc.
Below examples would make this concept clear.

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Following is an example which would fetch ID, Name and Salary fields from the CUSTOMERS
table where salary is greater than 2000:

SQL> SELECT ID, NAME, SALARY

FROM CUSTOMERS

WHERE SALARY > 2000;

This would produce following result:

+----+----------+----------+

| ID | NAME | SALARY |

+----+----------+----------+

| 4 | Chaitali | 6500.00 |

| 5 | Hardik | 8500.00 |

| 6 | Komal | 4500.00 |

| 7 | Muffy | 10000.00 |

http://www.tutorialspoint.com/sql/sql-operators.htm

Tutorials Point, Simply Easy Learning

21 | P a g e

+----+----------+----------+

Following is an example which would fetch ID, Name and Salary fields from the CUSTOMERS

table for a customer with name Hardik. Here it is important to note that all the strings should
be given inside single quotes ('') where as numeric values should be given without any quote as
in above example:

SQL> SELECT ID, NAME, SALARY

FROM CUSTOMERS

WHERE NAME = 'Hardik';

This would produce following result:

+----+----------+----------+

| ID | NAME | SALARY |

+----+----------+----------+

| 5 | Hardik | 8500.00 |

+----+----------+----------+

AND and OR Conjunctive Operators

The SQL AND and OR operators are used to combile multiple conditions to narrow data in an
SQL statement. These two operators are called conjunctive operators.

These operators provide a means to make multiple comparisons with different operators in the
same SQL statement.

The AND Operator:

The AND operator allows the existence of multiple conditions in an SQL statement's WHERE
clause.

Syntax:

The basic syntax of AND operator with WHERE clause is as follows:

SELECT column1, column2, columnN

FROM table_name

WHERE [condition1] AND [condition2]...AND [conditionN];

You can combine N number of conditions using AND operator. For an action to be taken by the
SQL statement, whether it be a transaction or query, all conditions separated by the AND must
be TRUE.

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

Tutorials Point, Simply Easy Learning

22 | P a g e

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Following is an example which would fetch ID, Name and Salary fields from the CUSTOMERS
table where salary is greater than 2000 AND age is less tan 25 years:

SQL> SELECT ID, NAME, SALARY

FROM CUSTOMERS

WHERE SALARY > 2000 AND age < 25;

This would produce following result:

+----+-------+----------+

| ID | NAME | SALARY |

+----+-------+----------+

| 6 | Komal | 4500.00 |

| 7 | Muffy | 10000.00 |

+----+-------+----------+

The OR Operator:

The OR operator is used to combine multiple conditions in an SQL statement's WHERE clause.

Syntax:

The basic syntax of OR operator with WHERE clause is as follows:

SELECT column1, column2, columnN

FROM table_name

WHERE [condition1] OR [condition2]...OR [conditionN]

You can combine N number of conditions using OR operator. For an action to be taken by the

SQL statement, whether it be a transaction or query, only any ONE of the conditions separated
by the OR must be TRUE.

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

Tutorials Point, Simply Easy Learning

23 | P a g e

+----+----------+-----+-----------+----------+

Following is an example which would fetch ID, Name and Salary fields from the CUSTOMERS
table where salary is greater than 2000 OR age is less tan 25 years:

SQL> SELECT ID, NAME, SALARY

FROM CUSTOMERS

WHERE SALARY > 2000 OR age < 25;

This would produce following result:

+----+----------+----------+

| ID | NAME | SALARY |

+----+----------+----------+

| 3 | kaushik | 2000.00 |

| 4 | Chaitali | 6500.00 |

| 5 | Hardik | 8500.00 |

| 6 | Komal | 4500.00 |

| 7 | Muffy | 10000.00 |

+----+----------+----------+

SQL - UPDATE Query

The SQL UPDATE Query is used to modify the existing records in a table.

You can use WHERE clause with UPDATE query to update selected rows otherwise all the rows
would be effected.

Syntax:

The basic syntax of UPDATE query with WHERE clause is as follows:

UPDATE table_name

SET column1 = value1, column2 = value2...., columnN = valueN

WHERE [condition];

You can combine N number of conditions using AND or OR operators.

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Tutorials Point, Simply Easy Learning

24 | P a g e

Following is an example which would update ADDRESS for a customer whose ID is 6:

SQL> UPDATE CUSTOMERS

SET ADDRESS = 'Pune'

WHERE ID = 6;

Now CUSTOMERS table would have following records:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | Pune | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

If you want to modify all ADDRESS and SALARY column values in CUSTOMERS table, you do not
need to use WHERE clause and UPDATE query would be as follows:

SQL> UPDATE CUSTOMERS

SET ADDRESS = 'Pune', SALARY = 1000.00;

Now CUSTOMERS table would have following records:

+----+----------+-----+---------+---------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+---------+---------+

| 1 | Ramesh | 32 | Pune | 1000.00 |

| 2 | Khilan | 25 | Pune | 1000.00 |

| 3 | kaushik | 23 | Pune | 1000.00 |

| 4 | Chaitali | 25 | Pune | 1000.00 |

| 5 | Hardik | 27 | Pune | 1000.00 |

| 6 | Komal | 22 | Pune | 1000.00 |

| 7 | Muffy | 24 | Pune | 1000.00 |

+----+----------+-----+---------+---------+

SQL - DELETE Query

The SQL DELETE Query is used to delete the existing records from a table.

You can use WHERE clause with DELETE query to delete selected rows, otherwise all the records
would be deleted.

Syntax:

The basic syntax of DELETE query with WHERE clause is as follows:

DELETE FROM table_name

Tutorials Point, Simply Easy Learning

25 | P a g e

WHERE [condition];

You can combine N number of conditions using AND or OR operators.

Example:

Consider CUSTOMERS table is having following records:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Following is an example which would DELETE a customer whose ID is 6:

SQL> DELETE FROM CUSTOMERS

WHERE ID = 6;

Now CUSTOMERS table would have following records:

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

If you want to DELETE all the records from CUSTOMERS table, you do not need to use WHERE
clause and DELETE query would be as follows:

SQL> DELETE FROM CUSTOMERS;

Now CUSTOMERS table would not have any record.

Further Detail:

Refer to the link http://www.tutorialspoint.com/sql

http://www.tutorialspoint.com/sql

Tutorials Point, Simply Easy Learning

26 | P a g e

List of Tutorials from TutorialsPoint.com
 Learn JSP

 Learn Servlets

 Learn log4j

 Learn iBATIS

 Learn Java

 Learn JDBC

 Java Examples

 Learn Best Practices

 Learn Python

 Learn Ruby

 Learn Ruby on Rails

 Learn SQL

 Learn MySQL

 Learn AJAX

 Learn C Programming

 Learn C++ Programming

 Learn CGI with PERL

 Learn DLL

 Learn ebXML

 Learn Euphoria

 Learn GDB Debugger

 Learn Makefile

 Learn Parrot

 Learn Perl Script

 Learn PHP Script

 Learn Six Sigma

 Learn SEI CMMI

 Learn WiMAX

 Learn Telecom Billing

 Learn ASP.Net

 Learn HTML

 Learn HTML5

 Learn XHTML

 Learn CSS

 Learn HTTP

 Learn JavaScript

 Learn jQuery

 Learn Prototype

 Learn script.aculo.us

 Web Developer's Guide

 Learn RADIUS

 Learn RSS

 Learn SEO Techniques

 Learn SOAP

 Learn UDDI

 Learn Unix Sockets

 Learn Web Services

 Learn XML-RPC

 Learn UML

 Learn UNIX

 Learn WSDL

 Learn i-Mode

 Learn GPRS

 Learn GSM

 Learn WAP

 Learn WML

 Learn Wi-Fi

webmaster@TutorialsPoint.com

http://www.tutorialspoint.com/
http://www.tutorialspoint.com/jsp
http://www.tutorialspoint.com/servlets/index.htm
http://www.tutorialspoint.com/log4j/index.htm
http://www.tutorialspoint.com/ibatis/index.htm
http://www.tutorialspoint.com/java/index.htm
http://www.tutorialspoint.com/jdbc/index.htm
http://www.tutorialspoint.com/javaexamples/index.htm
http://www.tutorialspoint.com/developers_best_practices/index.htm
http://www.tutorialspoint.com/python/index.htm
http://www.tutorialspoint.com/ruby/index.htm
http://www.tutorialspoint.com/ruby-on-rails-2.1/index.htm
http://www.tutorialspoint.com/sql/index.htm
http://www.tutorialspoint.com/mysql/index.htm
http://www.tutorialspoint.com/ajax/index.htm
http://www.tutorialspoint.com/ansi_c/index.htm
http://www.tutorialspoint.com/cplusplus/index.htm
http://www.tutorialspoint.com/perl/perl_cgi.htm
http://www.tutorialspoint.com/dll/index.htm
http://www.tutorialspoint.com/ebxml/index.htm
http://www.tutorialspoint.com/euphoria/index.htm
http://www.tutorialspoint.com/gnu_debugger/index.htm
http://www.tutorialspoint.com/makefile/index.htm
http://www.tutorialspoint.com/parrot/index.htm
http://www.tutorialspoint.com/perl/index.htm
http://www.tutorialspoint.com/php/index.htm
http://www.tutorialspoint.com/six_sigma/index.htm
http://www.tutorialspoint.com/cmmi/index.htm
http://www.tutorialspoint.com/wimax/index.htm
http://www.tutorialspoint.com/telecom-billing/index.htm
http://www.tutorialspoint.com/asp.net/index.htm
http://www.tutorialspoint.com/html/index.htm
http://www.tutorialspoint.com/html5/index.htm
http://www.tutorialspoint.com/xhtml/index.htm
http://www.tutorialspoint.com/css/index.htm
http://www.tutorialspoint.com/http/index.htm
http://www.tutorialspoint.com/javascript/index.htm
http://www.tutorialspoint.com/jquery/index.htm
http://www.tutorialspoint.com/prototype/index.htm
http://www.tutorialspoint.com/script.aculo.us/index.htm
http://www.tutorialspoint.com/web_developers_guide/index.htm
http://www.tutorialspoint.com/radius/index.htm
http://www.tutorialspoint.com/rss/index.htm
http://www.tutorialspoint.com/seo/index.htm
http://www.tutorialspoint.com/soap/index.htm
http://www.tutorialspoint.com/uddi/index.htm
http://www.tutorialspoint.com/unix_sockets/index.htm
http://www.tutorialspoint.com/webservices/index.htm
http://www.tutorialspoint.com/xml-rpc/index.htm
http://www.tutorialspoint.com/uml/index.htm
http://www.tutorialspoint.com/unix/index.htm
http://www.tutorialspoint.com/wsdl/index.htm
http://www.tutorialspoint.com/i-mode/index.htm
http://www.tutorialspoint.com/gprs/index.htm
http://www.tutorialspoint.com/gsm/index.htm
http://www.tutorialspoint.com/wap/index.htm
http://www.tutorialspoint.com/wml/index.htm
http://www.tutorialspoint.com/wi-fi/index.htm
http://www.tutorialspoint.com/

